Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Indian J Exp Biol ; 2013 Dec; 51(12): 1120-1124
Article in English | IMSEAR | ID: sea-150300

ABSTRACT

A novel combination of plant growth regulators comprising indole-3-butyric acid (IBA), 6-benzylaminopurine (BA) and gibberellic acid (GA3) in Murashige and Skoog basal medium has been formulated for in vitro induction of both shoot and root in one culture using cotyledonary node explants of guar, (Cyamopsis tetragonoloba). Highest percentages of shoot (92%) and root (80%) induction were obtained in the medium containing (mg/L) 2 IBA, 3 BA and 1 GA3. Shoot regeneration from the cotyledonary node explants was observed after 10-15 days. Regeneration of roots from these shoots occurred after 20 to 25 days. The regenerated plantlets showed successful acclimatization on transfer to soil. This protocol is expected to be helpful in carrying out various in vitro manipulations in this economically and industrially important legume.


Subject(s)
Cyamopsis/drug effects , Cyamopsis/growth & development , Gibberellins/pharmacology , Indoles/pharmacology , Kinetin/pharmacology , Plant Development/drug effects , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development
4.
Indian J Exp Biol ; 2001 Apr; 39(4): 371-7
Article in English | IMSEAR | ID: sea-62902

ABSTRACT

Twenty three pyrimidine auxotrophs of Sinorhizobium meliloti Rmd201 were generated by random mutagenesis with transposon Tn5. On the basis of biochemical characters these auxotrophic mutants were classified into car, pyrC and pyrE/pyrF categories. All auxotrophs induced white nodules which were ineffective in nitrogen fixation. Light and electron microscopic studies revealed that the nodules induced by pyrC mutants were more developed than the nodules of car mutants. Similarly the nodules induced by pyrE/pyrF mutants had more advanced structural features than the nodules of pyrC mutants. The nodule development in case of pyrE/pyrF mutants was not to the extent observed in the parental strain. These results indicated that some of the intermediates and/or enzymes of pyrimidine biosynthetic pathway of S. meliloti play a key role in bacteroidal transformation and nodule development.


Subject(s)
Medicago sativa/metabolism , Microscopy, Electron , Mutagenesis , Nitrogen Fixation , Plant Roots/metabolism , Pyrimidines/metabolism , Sinorhizobium meliloti/genetics , Symbiosis
5.
Indian J Exp Biol ; 2000 Oct; 38(10): 1041-9
Article in English | IMSEAR | ID: sea-62607

ABSTRACT

Ten aromatic amino acid auxotrophs of Sinorhizobium meliloti (previously called Rhizobium meliloti) Rmd201 were generated by random mutagenesis with transposon Tn5 and their symbiotic properties were studied. Normal symbiotic activity, as indicated by morphological features, was observed in the tryptophan synthase mutants and the lone tyrosine mutant. The trpE and aro mutants fixed trace amounts of nitrogen whereas the phe mutant was completely ineffective in nitrogen fixation. Histology of the nodules induced by trpE and aro mutants exhibited striking similarities. Each of these nodules contained an extended infection zone and a poorly developed nitrogen fixation zone. Transmission electron microscopic studies revealed that the bacteroids in the extended infection zone of these nodules did not show maturation tendency. A leaky mutant, which has a mutation in trpC, trpD, or trpF gene, was partially effective in nitrogen fixation. The histology of the nodules induced by this strain was like that of the nodules induced by the parental strain but the inoculated plants were stunted. These studies demonstrated the involvement of anthranilic acid and at least one more intermediate of tryptophan biosynthetic pathway in bacteroidal maturation and nitrogen fixation in S. meliloti. The alfalfa plant host seems to provide tryptophan and tyrosine but not phenylalanine to bacteroids in nodules.


Subject(s)
Amino Acids/metabolism , DNA Transposable Elements , Medicago sativa/microbiology , Mutagenesis , Sinorhizobium meliloti/genetics , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL